Dynamic Highway Modelling

A Perspective

Martin Bach – Minnerva

Dynamic Modelling – Position in the Modelling Spectrum

- Conventional ‘Static’ assignment – summed up as:
 - ‘Instantaneous’ loading of trips across the network
 - All-or-Nothing, volume averaging, equilibrium methods
 - Incorporates junction modelling
 - Outputs:
 - (Cost) skim matrices
 - Select link, sub-area cordon analysis
- But:
 - Does not capture the time dependent dynamics in the network
 - Cannot model traffic congestion ‘generators’ satisfactorily
 - Not ‘fit’ for some purposes
Dynamic Modelling – Position in the Modelling Spectrum

- **Micro-simulation models**
 - Detailed modelling of individual vehicles moving through the network
 - Time dependent dynamics and traffic congestion generators are modelled

- **But:**
 - Linkage with the static model is tenuous/difficult due to different network data requirements
 - Static/Simulation models tend to be viewed as alternatives rather than complementary

<table>
<thead>
<tr>
<th>Static</th>
<th>Microscopic simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturn</td>
<td>Paramics: Q and S</td>
</tr>
<tr>
<td>Cube</td>
<td>Visim</td>
</tr>
<tr>
<td>Vissum</td>
<td>Cube Dynasim</td>
</tr>
<tr>
<td>Emme</td>
<td></td>
</tr>
<tr>
<td>OmniTRANS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Macroscopic/Mesoscopic simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OmniTRANS</td>
</tr>
<tr>
<td>Emme/3; Cube Avenue</td>
</tr>
<tr>
<td>[Marple, Indy, Metanet]</td>
</tr>
<tr>
<td>CONTRAM</td>
</tr>
</tbody>
</table>
OmniTRANS – Macroscopic Dynamic Assignment

- Data Requirements:
 - Same network structure as used by Static Modelling
 Additional network data requirements limited to:
 - Definition of number of lanes per link (match junction definition)
 - Saturation flows per lane
 - Link free flow and capacity speeds
 - Classification of ‘urban’ and ‘non-urban’ link types
 - Uses same demand matrices as used by Static Modelling
 Some notion of time profiling is required:
 - Either ‘hourly’ matrix is given a flow profile, or
 - Series of matrices by time slice are provided
 - Uses the routing determined by the Static Assignment
 - Is fixed for the modelling period

MaDAM - Features

- Model based on principles of Fluid Mechanics
 - This models the flow of traffic through the network in terms of speed, flow and density
 - Models the conditions on (small) link segments in the network – essentially the density of traffic
- Supports the modelling of:
 - the time dependent dynamics in the network
 - blocking back at junctions
 - propagation of queues along links
 - variable rates of traffic demand
 - the effects of (dynamic) traffic management measures
 - Lane merges and land ‘drops’
 - Ramp metering
 - Speed limit changes
 - Rush hour lanes
MaDAM - Principles

- Number of lanes
- Free-flow speed
- Speed at capacity
- Saturation flow

Speed - flow curve

0 20 40 60 80 100 120

Flow (car-equivalants /h)

0 500 1000 1500 2000 2500

Speed (km/h)

Density - flow curve

0 20 40 60 80 100 120

Density (car-equivalants /km)

Speed (Flow, Density): recalculated every n seconds (where n is typically 1)

MaDAM - Principles

‘Non Urban’ Links

Lane Merges

Lane Drops

Extra term added to the speed equation
MaDAM - Principles

Urban Links

MaDAM – The Ins and Outs of Time

inputs

time

modelling time

output time units (mins)

Calculations are done per modelling time unit, typically 1 second, per link segment.

Outputs are aggregated into user defined time blocks for analysis.

network loads
network costs
network skims
link densities
link ‘service quality’

Analysis by time slice
An Example – St Helier Jersey
Summary

• Relatively easy to progress from the ‘static’ to ‘dynamic’ world
• Provides a more detailed understanding of what is happening in a network
• Gives more accurate network costs
• Considerably cheaper than building a micro-simulation model
• Of more use for ‘operational’ investigations?
• How does it fit into our analytical mindset?
 – Can the more detailed outputs can be used in the ‘conventional’ static analytical environment?